Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(48): eadi3568, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38039365

RESUMO

Absorbing aerosols emitted from biomass burning (BB) greatly affect the radiation balance, cloudiness, and circulation over tropical regions. Assessments of these impacts rely heavily on the modeled aerosol absorption from poorly constrained global models and thus exhibit large uncertainties. By combining the AeroCom model ensemble with satellite and in situ observations, we provide constraints on the aerosol absorption optical depth (AAOD) over the Amazon and Africa. Our approach enables identification of error contributions from emission, lifetime, and MAC (mass absorption coefficient) per model, with MAC and emission dominating the AAOD errors over Amazon and Africa, respectively. In addition to primary emissions, our analysis suggests substantial formation of secondary organic aerosols over the Amazon but not over Africa. Furthermore, we find that differences in direct aerosol radiative effects between models decrease by threefold over the BB source and outflow regions after correcting the identified errors. This highlights the potential to greatly reduce the uncertainty in the most uncertain radiative forcing agent.

2.
Nat Commun ; 13(1): 5914, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36207322

RESUMO

Biomass burning (BB) is a major source of aerosols that remain the most uncertain components of the global radiative forcing. Current global models have great difficulty matching observed aerosol optical depth (AOD) over BB regions. A common solution to address modelled AOD biases is scaling BB emissions. Using the relationship from an ensemble of aerosol models and satellite observations, we show that the bias in aerosol modelling results primarily from incorrect lifetimes and underestimated mass extinction coefficients. In turn, these biases seem to be related to incorrect precipitation and underestimated particle sizes. We further show that boosting BB emissions to correct AOD biases over the source region causes an overestimation of AOD in the outflow from Africa by 48%, leading to a double warming effect compared with when biases are simultaneously addressed for both aforementioned factors. Such deviations are particularly concerning in a warming future with increasing emissions from fires.


Assuntos
Poluentes Atmosféricos , Incêndios , Aerossóis/análise , Poluentes Atmosféricos/análise , Viés , Biomassa , Monitoramento Ambiental/métodos
4.
Environ Pollut ; 195: 319-29, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25017412

RESUMO

A new global aerosol assimilation system adopting a more complex icosahedral grid configuration is developed. Sensitivity tests for the assimilation system are performed utilizing satellite retrieved aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the results over Eastern Asia are analyzed. The assimilated results are validated through independent Aerosol Robotic Network (AERONET) observations. Our results reveal that the ensemble and local patch sizes have little effect on the assimilation performance, whereas the ensemble perturbation method has the largest effect. Assimilation leads to significantly positive effect on the simulated AOD field, improving agreement with all of the 12 AERONET sites over the Eastern Asia based on both the correlation coefficient and the root mean square difference (assimilation efficiency). Meanwhile, better agreement of the Ångström Exponent (AE) field is achieved for 8 of the 12 sites due to the assimilation of AOD only.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Modelos Químicos , Imagens de Satélites , Poluição do Ar/estatística & dados numéricos , Ásia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...